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PREFACE 
I. 

differences between 'the probability models that the Bayesians use 
and the onesthat the frequentists use to articulate their very different 
representations of the discipline of statistics. We emphasize that the 
likelihood methods advocated here require only the frequentists' 
probability models, and do not entail Bayesian prior probability 
distributions for parameters. 

CHAPTER 1 

The first principle - 

1.1 Introduction 

In this chapter we distinguish between the specific question whose 
answer we seek and other important statistical questions that 
are closely related to it. We find the answer to our question in 
the simplest possible case, where the proper interpretation of 
statistical evidence is transparent. And we begin to test that 
answer with respect to intuition, or face-validity; consistency with 
other aspects of reasoning in the face of uncertainty (specifically, 
with the way new evidence changes probabilities); and operational 
consequences. We also examine some of the common examples 
that have been cited as proof that the answer we advocate is 
wrong. We observe two general and profound implications of 
accepting the proposed answer. These suggest that a radical 
reconstruction of statistical methodology is needed. Finally, to 

I define the concept of statistical evidence more precisely, we 

illustrate the distinction between degrees of uncertainty, measured 
by probabilities, and strength of evidence, which is measured by 
likelihood ratios. 

1.2 The law of likelihood 

Consider a physician's diagnostic test for the presence or absence 
of some disease, D. Suppose that experience has shown the test to 
be a good one, rarely producing misleading results. Specifically, the 
performance of the test is described by the probabilities shown in 
Table 1 .l. The first row shows that when D is actually present, the 
test detects it with probability 0.95, giving an erroneous negative 
result with probability 0.05. The second row shows that when D is 
absent, the test correctly produces a negative result with probability 
0.98, leaving a false positive probability of only 0.02. 

Now suppose that a patient, Mr Doe, is given the test. On learning 
that the result is positive, his physician might draw one of the 



2 THE FIRST PRINCIPLE THREE QUESTIONS 3 

Table 1.1 A physicifm S diagnostic test for the presence or absence of disease D 

Test result 

Positive Negative 

Present 0.95 0.05 
Disease D 

, Absent 0.02 0.98 

following conclusions: 

1. Mr Doe prot)ablyldoes not have D. 
2. Mr Doe should be treated for D. 
3. The test result is evidence that Mr Doe has D. 

Which, if any, of these conclusions is appropriate? Can any of them 
be justified? It is easy to see that under the right circumstances all 
three might be simultaneously correct. 

Consider conclusion 1. It can be restated in terms of the prob- 
ability that Mr Doe has D, given the positive test, Pr(DI+); it says 
that Pr(DI+) < i. Whether this is true or not depends in part on 
the result (+) and the characteristics of the test (Table 1.1). But 
it also depends on the prior (before the test) probability of the 
condition, Pr(D). Bayes's theorem shows that 

If D is a rare disease, so that Pr(D) is very small, then it will be true 
that Pr(DI+) is small and conclusion 1 is correct (as, for example, 
if Pr(D) = 0.001, so that Pr(D)+) = 0.045). On the other hand, 
if D were more common - say, with a prior probability of 
Pr(D) = 0.20 - then Pr(DI+) would be 0.92, and conclusion 1 
would be quite wrong. The validity of conclusion 1 depends critically 
on the prior probability. 

Even if conclusipn 1 ,jp correct - say, Pr(DI+) = 0.045 - conclu- 
sion 2 might also be correct, and the physician might appropriately 
decide to treat for D even though it is unlikely that D is present. This 
might be the case when the treatment is effective if D is present but 
harmless otherwise, and when failure to treat a patient who actually 

has D is disastrous. But conclusion 2 would be wrong under different 
assumptions about the risks associated with the treatment, about the 
consequences of failure to treat when D is actually present, etc. It is 
clear that to evaluate conclusion 2 we need, in addition to the 
information required to evaluate conclusion 1, to know what are 
the various possible actions and what are their consequences in 
the presence of D and in its absence. 

But how about conclusion 3? The rule we will consider implies 
that it is valid, independently of prior probabilities, and without 
reference to what actions might be available or their consequences: 
the positive test result is evidence that Mr Doe has the disease. 
Furthermore the rule provides an objective numerical measure of 
the strength of that evidence. 

We are concerned here with the interpretation of a certain kind of 
observation as evidence in relation to a certain kind of hypothesis. 
The observation is of the form X = x ,  where X is a random variable 
and x is one of the possible values of X. We begin with hypotheses 
which, like the two in the example of Mr Doe's test, imply definite 
numerical probabilities for the observation. Later we will consider 
more general hypotheses. 

Law of likelihood: If hypothesis A implies that the probability that a 
random variable X takes the value x is p A ( x ) ,  while hypothesis B 
implies that the probability is pB(x) ,  then the observation X = x is 
evidence supporting A over B if and only if p A ( x )  > pB(x) ,  and the 
likelihood ratio, p, , (x) /pB(x) ,  measures the strength of that evidence 
(Hacking, 1965). 

In our example the hypothesis (A) that Mr Doe has disease D 
implies that a positive test result will occur with probability 0.95, 
while hypothesis B, that he does not have D, implies that the prob- 
ability is only 0.02. Thus, according to the law of likelihood, Mr 
Doe's positive test is evidence supporting A over B, and conclusion 
3 is correct. 

1.3 Three questions 

The physician's three conclusions can be paraphrased as follows: 

1. I believe B to be true. 
2. I should act as if A were true. 
3. This test result (+) is evidence supporting A over B. 

These are answers to three generic questions: 



4 THE FIRST PRINCIPLE TOWARDS VERIFICATION 5 

1. What do I believe, now that I have this observation? 
2. What should I do, now that I have this observation? 
3. What does this observation tell me about A versus B? (How should 

I interpret this observation as evidence regarding A versus B?) 

Cox (1958) distinguishpd between the problem areas represented 
by questions 2 and 3 and emphasized the importance of the latter: 

Even in problems where a clear-cut decision is the main object, it very 
often happens that the assessment of4osses and prior information is 
subjective, so that it will help to get clear first the relatively objective 
matter of what the data say.. . In some fields, too, it may be argued 
that one of the main calls for probabilistic statistical methods arises 
from the need to have agreed rules for assessing strength of evidence. 

The third question is the one we want to answer. Although all 
three are obviously important, we will consider the first two only 
to clarify the third. It is the third question that is central to the 
reporting of statist$al data in scientific journals. For example, an 
epidemiologist might investigate the risk of a certain disease 
among workers exposed to a chemical agent in comparison to the 
risk among unexposed workers. He produces a data set, and our 
objective as statisticians is to understand how the data should be 
presented and interpreted as evidence about the risks. Suppose it 
has been hypothesized that exposure might be associated with a sub- 
stantial increase in the risk of the disease. Are these data evidence 
supporting that hypothesis? If so, how strong is the evidence for, 
say, a fivefold increase versus no increase? Is this ev'dence consistent 
with that found in other studies? If the publishe d report presents 
clear answers to such questions then it will be helpful to readers 
who will use this evidence, along with that from other sources, in 
deciding whether to move for changes in the workplace, whether 
to  do another, larger, study, whether to undertake'an investigation 
to  explain how the chemical exposure might lead to the disease, 
whether to change jobs, etc. The published paper presents the 
data, along with analyses that make clear its evidential meaning. 
The readers will then use the evidence to adjust their beliefs and to 
help them in making decisions. 

We will concentrate on hypotheses of a special kind, statistical 
hypotheses. A simple statistical hypothesis is one that completely 
specifies the probability distribution of an observable random vari- 
able. A composite statistiqal hypothesis asserts that the distribution 
belongs to a specified set of distributions. In our diagnostic example 
the random variable X represents the outcome of Mr Doe's test, and 

the two hypotheses about the presence or absence of D imply two 

i simple statistical hypotheses: if D is present then X has the prob- 
ability distribution given in the first row of Table 1.1, and if D is 
absent then X has the distribution given in the second row. When 
the observations are not numerical, as in Mr Doe's test where the 
outcomes are 'positive' or 'negative', we will usually give them 

I numerical codes such as 1 = 'positive' and 0 = 'negative'. The 
random variable will often be vector-valued, i.e. a realization x of 
X is not a single number, but an ordered set of numbers, as it 
would be if we observed not only Mr Doe's test result (x,) but 

I also his blood pressure (x2) and pulse rate ( x 3 )  Then the observa- 
tion would be a vector x = (x, , x2, x3). 

The reader might have noticed that the law of likelihood, as 
stated, does not apply to continuous probability distributions. 
This limitation is not essential, and Exercise 1.1 extends it to contin- 

I uous distributions. But for now we must see if the law is persuasive 
in the simple discrete case. 

1.4 Towards verification 
I 

Why should we accept the law of likelihood? One favorable point is 
that it seems to be the natural extension, to probabilistic phenom- 
ena, of scientists' established form of reasoning in deterministic 
situations. If A implies that under specified conditions x will be 
observed, while B implies that under the same conditions something 
else, not x, will be observed, and if those conditions are created and x 
is seen, then this observation is evidence supporting A versus B. This 
is the law of likelihood in the extreme case of p,(x) = 1 and 

I 
pB(x) = 0. The law simply extends this way of reasoning to say 
that if x is more probable under hypothesis A than under B, then 
the occurrence of x is evidence supporting A over B, and the strength 
of that evidence is determined by how much greater the probability 
is under A. This seems both objective and fair - the hypothesis that 
assigned the greater probability to the observation did the better job 
of predicting what actually happened, so it is better supported by 
that observation. If the likelihood ratio, pA(x)/pB(x), is very large, 
then hypothesis A did a much better job than B of predicting 
which value X would take, and the observation X = x is very 
strong evidence for A versus B. 

One crucial test of the law of likelihood is for consistency with the 
rules of probability theory. There are serious questions about when 
it is meaningful to speak of the probability that a hypothesis A is 
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true. But there certainly are some situations where hypotheses have 
probabilities. (For example, if I generate X by drawing balls from 
one urn or another, and if I choose which urn to draw from by a 
coin toss, then the hypotheses corresponding to the two urns both 
have probability 0.5.) 

Suppose A and B are hypotheses for which Pr(A)/Pr(B) is the 
probability ratio before X is observed. The elementary rules govern- 
ing conditional probabilities imply that after X = x is observed, the 
probability ratio is changed to 

This shows that the new evidence, that the observed value of the 
random variable X is x, changes the probability ratio by the factor 
pA(x)/pB(x), precisely in agreement with the law of likelihood. If 
we use the law then our interpretations of data as evidence will be 
consistent with the rules of probability theory; we will never claim 
that an observation is evidence supporting A over B when the 
effect of that observation, if A and B had probabilities, would be 
to reduce the probability of A relative to that of B. Furthermore, 
the factor pA(x)/pB(x), that the law uses to measure the strength 
of the evidence, is precisely the factor by which the observation 
X = x would change the probability ratio Pr(A)/Pr(B). 

It is important to be aware that in asking which is better sup- 
ported, A or B, we are not assuming that one or the other must be 
true. On this poinl, we note that equation (1.1) does not require 
that the two probabilities, Pr(A) and Pr(B), sum to one. 

Another crucial test of the law of likelihood is operational - does 
it work? If we use the law to evaluate evidence, will we be led to the 
truth? Suppose A is actually false and B is true. Can we obtain 
observations that, qccording to theilaw, are evidence for A over B? 
Certainly. Does this mean that the law is invalid? Certainly not. 
Evidence, properly interpreted, can be misleading. This must be 
the case, for otherwise we would be able to determine the truth 
(with perfect certainty) from any scrap of evidence that it not utterly 
ambiguous. It is too much to hope that evidence cannot be mislead- 
ing. However, we might reasonably expect that strong evidence 
cannot be misleading very often. We might also expect that, as 
evidence accumulafes, it will tend to fav& a true hypothesis over a 
false one more and more strongly. These expectations are met by the 
concept of evidence embodied in the law .of likelihood, as explained 
below. 
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Suppose A implies that X has probability distribution pA( . ) ,  
I 
I 
I 

while B implies pB(-) .  If B is true then when we observe X it 
is unlikely that we will find strong evidence favoring the false 
hypothesis A. Specifically, for any given constant k > 0, 

Pr( PA(X)/PB(X) 2 k, 5 Ilk. (I 4 
I This is because, if S is the set of values of x that produce a likelihood 

ratio (in favor of A versus B) of at least k, then when B is correct 

1 
I The first inequality is obtained because, for every x in S, pB(x) 5 

pA(x)/k, and the second because the sum Cs pA(x) is the prob- 
ability of S when A is correct, which cannot exceed one. 

A similar argument can be used to prove a much stronger result: if 
an .unscrupulous researcher sets out deliberately to find evidence 
supporting his favorite but erroneous hypothesis (A) over his rival's 
(B), which happens to be correct, by a factor of at least k, then the 
chances are good that he will be eternally frustrated. Specifically, 
suppose that he observes a sequence XI,  X2,. . . of independent 

I random variables, identically distributed according to pB( . ). He 
checks after each observation to see whether his accumulated data 
are 'satisfactory' (likelihood ratio favors A by at least k), stopping 
and publishing his results only when this occurs. After n observa- 

, tions the likelihood ratio is n?pA(xi)/pB(xi). It is a remarkable 
fact that the probability that he will be successful is no greater 
than l lk,  and this remains true even if the number of observations 
he can make is limitless. That is, when B is true, 

i > k for some n = 1,2,.  . . 

(Robbins, 1970). 
In a more positive vein, the law of likelihood, together with the 

1 

I law of large numbers, implies that the accumulating evidence repre- 
sented by observations on a sequence XI, X2,. . . of independent 
random variables will eventually strongly favor the truth. Specifi- 
cally, if the Xi are identically distributed according to p ~ ,  and if pA 

1 identifies any other probability distribution, then the likelihood ratio 
n: (Xi) /pB(Xi) converges to zero with probability one (Exercise 
1.3). This means that we can specify any large number k with perfect 
certainty that our evidence will favor B over A by at least k if only we 
take enough observations. The truth will appear. It also implies that 
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along with k we can specify any small number E > 0, then find a 
sample size n that will ensure that the probability of finding strong 
evidence (a likelihdod:ra$o of at least k) supporting B over A is at 
least 1 - E. 

1.5 Relativity of evidence 

The law of likelihood applies to pairs of hypotheses, telling when a 
given set of observations is evidence for dne versus the other: 
hypothesis A is beger supported than B if A implies a greater prob- 
ability for the observations than B does. This law represents a con- 
cept ofevidence that is essentially relative, one that does not apply to 
a single hypothesis, taken alone. Thus is explains how observations 
should be interpreted as evidence for A vis-a-vis B, but it makes no 
mention of how those observations should be interpreted as evidence 
in relation to A alone. 

When there are probabilities, Pr(A) and Pr(B), for the hypotheses, 
the law of likelihood implies that an observation X = x that sup- 
ports A over B increases the relative probability of A, as expression 
(1.3) shows. This observation does not necessarily increase the 
absolute probability of A, however. In fact, an observation that 
supports A over B can reduce the probabilities of both hypotheses. 
For example, suppose that there is another hypothesis C and that 
a priori Pr(A) = Pr(B) = Pr(C) = 4. If pA(x) = i. pB(x) = A, and 
pc(x) = 4, then the effect of the observation X = x is to reduce 
the probability of A and of B while doubling the probability of A 
relative to that of B. That is, Pr(A1X = x) < Pr(A) and 
Pr(B1X = x) < Pr(B), yet 

The observation is not evidence supporting A taken alone - it is ' 

evidence supporting A over B. Likewise, observations can support 
A over B while increasing both probabilities, and such observations 
are evidence against B vis-a-vis A, but not evidence against B by 
itself. 

Can a valid rule be found that will guide the interpretation of 
statistical data as evidence relating to a single hypothesis, without 
reference to an alternative? We wi) examine two candidates. The 
first we call the law bf improbability. It states that X = x is evidence 
against A ifpA(x) is small, that is, if A implies that the observation 
is improbable. The second, which we call the law of changing 
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probability, states that X = x is evidence for or against A according 
to whether the effect of the observation is to increase or reduce the 
probability that A is true. 

We will argue that neither of these rules represents a satisfactory 
concept of evidence for scientific discourse, the first because it is 
wrong, and the second because it is subjective. The first rule, the 
law of improbability, has had a powerful influence on statistical 
thinking. It is often cited as the justification for the popular statisti- 
cal procedures called tests of significance. It will be considered in 
detail in Chapter 3, where we examine the rationale for tests of 
significance and argue that the law of improbability is wrong. The 
second rule, although stated in terms of a single hypothesis, and 
not referring to any explicit alternative, actually entails both alter- 
native hypotheses and conditions on how prior probability is distrib- 
uted among the hypotheses. Although it has had little direct impact 
on statistical thinking, this rule has received much attention from 
philosophers (Carnap, 1950; Good, 1962; Salmon, 1983). 

The law of changing probability says that: 

(i) the observation X = x is evidence supporting A if its effect is 
to increase the probability of A; that is, X = x supports A if 
Pr(A1X = x) > Pr(A); and 

(ii) the ratio Pr(A1X = x)/Pr(A) measures the strength of the 
evidence. 

In our diagnostic test example, the law of changing probability 
says that a positive test is evidence supporting the hypotheses that 
D is present by the factor Pr(DI+)/Pr(D) = Pr(+lD)/Pr(+) = 
0.95/Pr(+). To calculate this quantity, we must know Pr(D), in 
which case Pr(+) = 0.95Pr(D) + 0.02(1 - Pr(D)) and 

Pr(Dl+)/Pr(D) = r/[rPr(D) + (1 - Pr(D))] (1.4) 

where r = 0.95/0.02 is the likelihood ratio, Pr(+(D)/Pr(+(not-D). 
Expression (1.4) is a strictly increasing function of r which equals 
one when r = 1. Thus in this case, according to the law of changing 
probability, the observation (+) supports D over not-D if and only if 
the likelihood ratio is greater than one. And the greater the like- 
lihood ratio, the stronger the evidence. This conclusion differs 
from that implied by the law of likelihood only in that the measure 
of the evidence's strength depends on Pr(D) as well as on the ratio 
Pr(+lD)/Pr(+)not-D); a given likelihood ratio in favor of D is inter- 
preted as stronger evidence when Pr(D) is small than when this 
probability is large. If you and I hold different initial values for 
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the probability of D, then we will agree that a positive test is evidence 
for D, but we will disagree about the strength of that evidence. 

However, if the possibilities are richer, then the law of changing 
probability implies .that we need not agree even as to the direction 
of the support, in favor of disease or against it. This is because, 
although the law of changing probability appears to measure the 
absolute evidence for or against hypothesis A, not the evidence for 
A relative to another hypothesis, this measure is in fact strongly 
dependent not only on what alternatives to A are considered, 
but also on the way at priori probabilities are distributed over the 
alternatives. 

Suppose we want. to Cvaluate an observation X = x as evidence 
relating to hypothesis A, for which we know both the a priori prob- 
ability of A, Pr(A), and the probability that X = x if A is true, pA (x). 
To apply the lawa of changing probability we must evaluate 
Pr(A1 X = x)/Pr(A) = pA(x)/Pr(X = x), and the denominator, 
Pr(X = x), depends directly on alternatives to A and their a priori 
probabilities, as well as on the probabilities that X = x under the 
various alternatives. For exampie, if there are only three possible 
hypotheses, A, B, and C, which have respective a priori probabilities I I 
Pr(A), Pr(B), and Pr(C), and which imply respective probabilities 
pA(x), pB(x), and pc(x) for the event X = x, then Pr(X = x) = 

~ 
pA (x)Pr(A) + pB(x)Pr(B) + pc(x)Pr(C). According to the law of 
changing probability the evidence for A in X = x is I 

Not only does this quantity depend on the specific alternatives, B 
and C, that are considered (and the probabilities of X = x under 
those alternatives), it also depends on how the a priori probability 
of not-A is divided between B and C. If Pr(A) is small and if 
pe(x) <pA(x) < pC(x), then the effect of the observation X = x 
will be to increase the probability of A if Pr(B) is large, but to 
decrease it if Pr(C) is large. Whereas the law of likelihood measures 
the support for one hypotbesjs A relative to a specific alternative B, 
without regard eithg to the pqior probabilities of the two hypotheses 
o r  to what other hypotipqclfes might also be considered, the law of 
changing probability measures support for A relative to a specific 
prior probability distribution over A and its alternatives - the 
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alternatives and their a priori probabilities are essential to the law of 
changing probability, although the formula Pr(A(X = x)/Pr(A) 
conceals this dependence. 

The law of changing probability is of limited usefulness in scienti- 
fic discourse because of its dependence on the prior probability 
distribution, which is generally unknown and/or personal. Although 
you and I agree (on the basis of the law of likelihood) that given 
evidence supports A over B, and C over both A and B, we might 
disagree about whether it is evidence supporting A (on the basis of 
the law of changing probability) purely on the basis of our different 
judgements of the a priori probabilities of A, B, and C. 

1.6 Strength of evidence 

How strong is the evidence when the likelihood ratio is 2?. . . Or 20? 
Many scientists (and journal editors) are comfortable interpreting a 
statistical significance level of 0.05 to mean that the observations are 
'pretty strong evidence' against the null hypothesis, and a level of 
0.01 to mean 'very strong evidence'. Are there reference values of 
likelihood ratios where corresponding interpretations are appropri- 
ate? (Later, in Chapter 3, we will show that these interpretations of 
significance levels are not appropriate.) 

There are two easy ways to develop a quantitative understanding 
of likelihood ratios. One is to consider some uncomplicated exam- 
ples where intuition is strong, and examine the likelihood ratios 
for various imagined observations. The other is to characterize like- 
lihood ratios in terms of their impact on prior probabilities. 

1.6.1 A canonical experiment 

Suppose we have two identical urns, one containing only white balls, 
and the other containing equal numbers of white and black balls. 
One urn is chosen and we draw a succession of balls from it, after 
each draw returning the ball to the urn and thoroughly mixing the 
contents. We have two hypotheses about the contents of the 
chosen urn, 'all white' and 'half white', and the observations are 
evidence. 

Suppose you draw a ball and it is white. Suppose you draw again, 
and again it is white. If the same thing happens on the third draw, 
many would characterize these three observations as 'pretty 
strong' evidence for the 'all white' urn versus the 'half white' one. 
The likelihood ratio is z3 = 8. 
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Table 1.2 Number of successive white balls (b )  corresponding to values' of a 
likelihood ratio (LR)  

If we observe b successive white balls, then the likelihood ratio in 
favor of 'all white' over 'half white' equals I / ( ; )~,  or 2b. A likelihood 
ratio of 2 measures $he evidence obtained on a single draw when a 
white ball is observed. If you would consider thatbbserving white 
balls on each of thr!ee draws is 'pretty strong' evidence in favor of 
'all white' over 'half white', then a likelihood ratio of 8 is pretty 
strong evidence. 

For interpreting likelihood ratios in other problems it is useful to 
convert them to hypothetical numbers of white balls (Table 1.2): a 
likelihood ratio of k'corresponds to b white balls, where k = 2b, or 
b = Ink/ In 2. Thus if you have observations giving a likelihood , , 

ratio pA(x)/pB(x) = 20, then you have evidence favoring A over B 
of the same strength as the evidence favoring 'all white' over 'half 
white' in b = ln 201 ln 2 = 4.3 consecutive white balls (stronger 
than four white balls, but not as strong as five). In the diagnostic 
test of section 1.2 a positive result, with a likelihood ratio of 47.5, 
is evidence supporting D over not-D of the same strength as that 
favoring the 'all white' urn when b = 5.6 consecutive white balls 
are drawn. 

1.6.2 Effects of likelihood ratios 

Some find the preceding statements dubious. To them it is not clear 
that a likelihood ratio of 4, say, represents the same strength of evi- 
dence in all contexts. These doubts come from failure to distinguish 
between the strength of the evidence, which is constant, and its 
implications, which vary according to the context of each applica- 
tion (prior beliefs, available actions, etc.). 

The key point is that observations with a likelihood ratio of 4 are 
evidence strong enough to quadruple a prior probability ratio. The 
values of the prior probabilities do not matter, nor does their ratio. 
The effect is always the same: a likelihood ratio of 4 produces a 
fourfold indcase in- the probability ratio. There are no circum- 
stances where the effect is different - say, where a likelihood ratio 
of  4 produces a threefold or a fivefold increase. Bayes's formula 

COUNTEREXAMPLES 

guarantees this: 

Whether the prior probabilities are known or not makes no differ- 
ence; their ratio, whatever it might be, would be increased k-fold 
by observations with a likelihood ratio of pA(~) /pB(x )  = k. 

Some people are willing to state probabilities for all sorts of 
hypotheses, while others find it meaningful to speak of 'the prob- 
ability that H is true' only for some very special hypotheses, such 
as those in the urn example, 'all white' and 'half white' when I 
choose the urn by a coin toss. The numerical value of the likelihood 
ratio, which is given a precise interpretation in this last situation (via 
Bayes's theorem), retains that meaning more generally: a likelihood 
ratio of k corresponds to evidence strong enough to cause a k-fold 
increase in a prior probability ratio, regardless of whether a prior 
ratio is actually available in a specific problem or not. The situation 
is analogous to that in physics where a unit of thermal energy, the 
BTU, is given a concrete meaning in terms of water - one BTU is 
that amount of energy required to raise the temperature of one 
pound of water at 39.2"F by 1°F. But it is meaningful to measure 
thermal energy in BTUs in rating air conditioners and in other 
situations where there is no water at 39.2"F to be heated. Likewise 
the likelihood ratio, given a concrete meaning in terms of prior 
probabilities, retains that meaning in their absence. 

1.7 Counterexamples 

We have seen that the law of likelihood is intuitively attractive; that 
in special situations where we know how to interpret evidence 
precisely (via its effect on the probabilities of hypotheses), the law 
is consistent with what we know to be correct; and that it works. 
We must test it further by examining its implications, but we will 
first inspect two examples which have convinced some that the 
law is false. Another purported counterexample is considered in 
section 1 .lo. 

1.7.1 A trick deck? 

I shuffle an ordinary-looking deck of playing cards and turn over the 
top card. It is the ace of diamonds. According to the law of like- 
lihood, the hypothesis that the deck consists of 52 aces of diamonds 
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( H I )  is better supported than the hypothesis that the deck is normal 
(HN) by the factor Pr(A+IHI)/Pr(A+(HN) = 52. (In comparison 
with the urn example, this is stronger than the evidence favoring 
'all white' over 'half white' when five consecutive draws produce 
white balls.) 

Some find this disturbing. Although the evidence is supposed to be 
strong, they wouldi not be convinced that there are 52 aces of 
diamonds instead of a normal deck. Furthermore, it seems unfair; 
no matter what card is drawn, the law implies that the corresponding 
trick-deck hypothesis (52 cards just like the one drawn) is better 
supported than the normal-deck hypothesis. Thus even if the deck 
is normal we will always claim to have found strong evidence that 
it is not. 

The first point rests on confusing eviderice and belief (questions 3 
and 1 in section 1.3). If drawing an ace of diamonds does not con- 
vince you that the deck has 52 aces of diamonds (HI) ,  this does 
not mean that the observation is not strong evidence in favor of 
HI versus HN. It means simply that the evidence is not strong 
enough to overcome the prior improbability of HI relative to HN. 
Edwards (1970) highlighted the role of prior opinion in our reaction 
to this example by considering how an individual with a somewhat 
different background might react: 

A Martian faced with this problem would find the first hypothesis [HI] 
most appealing; arb not all the cards identical in size and shape, with 
identical patterns on the side exposed to view? How natural, then, 
that they should all have the same design on the other side. 

The interplanetary perspective is not necessary; we can change our 
own prior beliefs and see how this changes the example. Suppose I 
show you two decks, one normal and one actually composed of 52 
aces of diamonds.. I choose a deck by a coin toss, shuffle the 
chosen deck, and' draw one card. It is an ace of diamonds. Now 
the conclusion that the deck is not the normal one 1oolis.quite 
reasonable. The evidence represented by the ace of diamonds is 
the same as before; it is the prior probabilities that have changed. 
Now the beliefs after seeing the evidence are dominated by that 
evidence, whereas before they were dominated by the prior beliefs. 

The second objection to the law, that HN is treated unfairly, rests 
on  a misinterpretation: 'evidence supporting HI  over HN1 is not 
'evidence against qN*. Consider the 51 additional different trick- 
deck hypotheses, $I2,. . . , HS2, one stating that all 52 cards are 
fours of clubs, etc. Observing the ace of diamonds is evidence 
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supporting HI over HN. It is also evidence supporting HN over H2, 
H3. etc., decisively. It is not evidence for or against HN alone. 

As is often true, a Bayesian calculation can help to clarify the 
point. Suppose that there is some prior probability lr that the deck 
is normal, and that if it is not normal, then it must be one of the 
52 trick decks, all of which are equally probable. Thus 
Pr(HN) = ?r and Pr(H,) = (1 - ?r)/52, for j = 1,2, .  . . ,52. How are 
these probabilities changed by the observation of an ace of 
diamonds? Bayes's theorem reveals that 

Pr(HN [A+) = X, 

The probability of HN is unchanged by the observation; the prob- 
ability of HI  is increased by a factor of 52, while the probabilities 
of all the other trick-deck hypotheses are driven to zero. The 
entire probability, 1 - lr, that was distributed evenly over the 52 
trick-deck hypotheses is now concentrated on H I .  The probability 
ratio of HI  to HN has increased sharply, from (1 - lr)/52lr to 
(1 - lr)/lr. But if T > $, this ratio is still less than one and the 
normal deck remains the more probable. 

This example shows the importance, as well as the difficulty, of 
maintaining the critical distinction between evidence and confidence 
(degree of belief). The next example makes a similar point. 

1.7.2 Greater confidence without stronger evidence? 

Suppose that two distributions, labelled 8, and 02, both assign the 
same probability to a specific outcome x - say, f(x;O1) = 
f (x; B2) = 1/20. The hypotheses H , :  8 = 81 and HZ: 8 = 8, both 
imply that the event X = x has probability 1/20, so that, according 
to the law of likelihood, the occurrence of this event is not evidence 
supporting either hypothesis over the other. 

Now consider the composite hypothesis: Hc: 8 = el or 82. 
Because this hypothesis also implies that the event X = x has 
probability 1/20, the same as the probability under H I ,  the law 
asserts that this evidence does not support Hc over HI - these 
two hypotheses are equally well supported. But Hc must be true if 
HI  is; therefore Hc is more likely to be true, more plausible, more 
believable, more tenable than HI .  Does this not imply that the 
evidence really does support Hc over HI ,  contrary to the law? 
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Then are t w ~ , p i w  of evidence here. One is statistical, the obser- 
vation; X = x.  l$e qther is logical, the relationship between the two 
hypotheses. Thi$ s e w d  bit of evidence implies that Hc is the more 
credible hypotheis,.independently of the first. It does not imply that 
the statistical evidenq supports Hc over HI.  On the other hand, the 
law of likelihood addresks only the statistical evidence, not that '& 
the logical relationship between the hypotheses. There is no inconsis- 
tency in acknowledging both that Hc is more credible than HI 
(because of their logical relationship, and independently of the 
observation) and that the observation X = x is evidence favoring 
neither. 

1.8 Testing simple hypotheses 

According to the law of likelihood, the strength of statistical 
evidence for one hypothesis vis-a-vis another is measured by the like- 
lihood ratio. This ratio also plays a central role in the Neyman- 
Pearson theory of hypothesis testing, but that theory addresses a 
different problem than the law of likelihood does. Neyman-Pearson 
theory, which will be discussed in Chapter 2, is aimed at using the 
observations to choose between two hypotheses, HI and Hz, not 
at representing or interpreting the observations as evidence. The 
choice is made as follows. Before X is observed a set R of possible 
values of X is selected. This set is called the critical region. Then if 
X = x is observed and x is in R, H2 is chosen; if x is not in R, HI  
is chosen. 

Neyman and Pearson (1933) pointed out that two types of error 
can be made: if HI 'is true then an observation in R will lead to 
erroneous choice of H2, a Type I error; a Type I1 error occurs 
when H2 is true but the observation is not in R, so that HI is 
chosen. The probability of a Type I error is called the size of the 
critical region and is denoted by a .  

For the case of simple hypotheses, HI and Hz, yeyman and 
Pearson sought, among all critical regions whose size does not 
exceed a specified value, such as CY 5 0.05, the one that has the 
smallest Type I1 error probability. They discovered that this best 
critical region is determined by the likelihood ratio. It is 
R = { f (  k}. That is, the best test procedure is 
'Choox H2 iflithe,l&elihood rptio is at least k' where k is chosen 
to give the derfrred, $ i ~ ,  a. 

For vamp$, suHpose the hypotheses specify different values for 
the sqccess p~obabllity in 30 Bernoulli(0) trials - say, HI: 0 = i 
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and H2: 0 = $. When the number of successes observed is x ,  the 
2x - 30 likelihood ratio in favor of H2 over HI is f2(x)/f,(x) = 3 . 

The best critical region with size cr = 0.05 contains all values of x 
for which the likelihood ratio is at least k = 324-30 = &, that is, 
x 2 12. (Under HI the probability of 12 or more successes in 20 
trials is only 0.05.) 

It is reassuring to find that the best test calls for choosing H2 when 
evidence favors H2 over HI  by a sufficiently large factor (k). But, as 
this example shows, the critical factor k can be less than one, and in 
that case the test sometimes calls for choosing H2 when the evidence 
actually favors HI .  For instance, when x = 12 is observed, the test 
calls for choosing Hz, although the observation is strong evidence 
supporting HI over H2 (fi (12)/fi(12) = 729, evidence stronger 
than when nine consecutive white balls are drawn in the urn example 
of section 1.6). 

Similarly, the observations x = 13 and 14 are fairly strong evi- 
dence in favor of H, . And the observation x = 15, which represents 
a success rate of 4, equally far from the two hypothesized values, 
0 = a and 0 = i, is not evidence supporting H2 over H I ,  but utterly 
neutral evidence ( f2(15)/f, (15) = 1). 

Although likelihood theory and Neyman-Pearson testing theory 
have much in common, it is clear that there are fundamental differ- 
ences. While likelihood theory addresses the last of the physician's 
three questions in Chapter 1 (What does this observation say 
about HI versus Hz?), Neyman-Pearson theory is concerned with 
the second question (What should I do?). It is interesting to note 
that the link between the two theories would be even stronger if, 
instead of minimizing the probability of a Type I1 error for a fixed 
value of a ,  Neyman and Pearson had sought to minimize the sum 
of the two error probabilities; in that case they would have found 
that the best critical region consists of those observations whose 
likelihood ratio is greater than one. That is, they would have 
found that the best rule is to choose the hypothesis that is better 
supported by the observations (Exercise 1.6; see Cornfield, 1966). 
We will take a closer look at the Neyman-Pearson statistical 
theory in Chapter 2. 

1.9 Composite hypotheses 

The law of likelihood explains how an observation on a random 
variable should be interpreted as evidence in reIation to two 
simple statistical hypotheses. It also applies to some composite 
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hypotheses, such as Hc in section 1.7. ~ u t  it does not apply to 
composite hypotheses generally. A simple example shows why this 
is so. . . 

Suppose three prdbability distributions, labelled e l ,  02,  and 03,  are 
under consideration for a random variable X .  In particular, we want 
to evaluate an obsehatibn X  = x  as evidence for the simple hypoth- 
esis Hz: 8  = O2 vis:d-vis the composite Hc: 8  = 81 or 03.  Suppose 
f ( x ;  8 , )  > f ( x ;  92) > f ( x ;  83), that is, the observation is evidence 
supporting H I :  8  = e l '  over H2,  but it also supports H2 over 
H3:  8  = 83. t i 

For example, X migMCbe the number of white balls in five draws 
(with replacement) from an urn whbse proportion of white balls is 
either one-fourth ( e l ) ,  one-half (02 )  or three-fourths ( 0 3 ) .  If none 
of the five draws produces a white ball ( X  = 0), this is evidence 
supporting H I  over Hz by a factor of ( i ) 5 / ( i ) 5  = 9, or about 7.6. 
But it also supports 'H2 over H3,  by (i)5/(a)5 = 32. How about Hc 
(proportion is either a or ) versus Hz? Because Hc does not imply 
a definite probability for the observation, the'law of likelihood is 
silent. 

Perhaps the law as stated above is unnecessarily restricted, and 
an acceptable extension might be found which would imply that 
X = 0 is evidence for Hc versus Hz.  One argument that might be 
advanced in support of this speculation is as follows: Hc must be 
true if H I  is true, and HI is supported over Hz.  Thus it might 
seem reasonable to say that Hc is also supported over H Z .  But this 
argument rests on the same fallacy as the one at the end of section 
1.7 - confusing whdt the logical structure implies with what the 
statistical data tell us. 

Examination of the evidence's effect on the relative probabilities 
of Hc and Hz,  quantified by Bayes's formula, confirms that the 
suggested extension of the law of likelihood goes too far: if the 
three values 4 ,  82, and O3 have respective prior probabilities p l ,  
PZ , and ~ 3 ,  then 

This ratio is larger or smaller than the a priori probability ratio, 
( p l  + p 3 ) / p 2 ,  accordjog ta whether p I / p 3  is larger or smaller than 
31/21 1. Observafi~p~~of no white balls in five draws causes an 
increase in the probability of Hc, compared to that of Hz, if the 
ratio of prior probqbiliti~g a( the components of Hc, p I / p 3 ,  is . ' 
large enough, pnd otbew& causqs a ,decrease. 

, ? *  {!I ( * O f >  

!'! *f'\ 7 1 1  , 
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I 
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More generally, let r12  be the likelihood ratio of H I  to Hz,  
f ( x ;  O 1 ) / f  ( x ;  0 2 ) ,  and let r32 be the ratio of H3 to Hz.  Then 

which equals 

Irl2w + r32(I - W ) ] ( P I  + ~ 3 )  7 

P2 

where w  = p , / ( p l  + p 3 ) .  Thus the term in square brackets is the 
factor by which the prior probability ratio Pr(Hc) /Pr (H2)  is altered 
by the observation X  = x .  This factor is a weighted average of the 
two likelihood ratios, r12 and ~ 3 2 ,  the weights being the proportions 
of the total probability of Hc,  pl + p 3 ,  that are assigned to the 
respective components, H ,  and H3.  Since this factor is at least as 
large as the smaller of the two likelihood ratios, we can properly 
characterize the observation as evidence favoring Hc over Hz 
when both r,2 and r32 exceed unity, that is, when the evidence sup- 
ports each of the components of Hc, H I  and H 3 ,  over H z .  But 
when r I 2  > 1 > r)2 we can interpret the evidence for Hc versus Hz 
only in relation to the price probability ratio pl / p 3 .  

What, then, can we say about statistical evidence when many 
more than two simple probability distributions are of genuine 
interest? Does the law of likelihood (without prior probabilities) 
provide a means of representing and measuring the evidence 
which is appropriate for scientific interpretation and communica- 
tion? To show that it does, we consider an example that is examined 
in greater detail in section 6.2. In that example medical researchers 
are interested in the success probability, 8,  associated with a new 
treatment. They are particularly interested in how 8  relates to the 
old treatment's success probability, believed to be about 0.2. They 
have reason to hope that 9  is considerably greater, perhaps 0.8 or 
even greater. To obtain evidence about 8,  they carry out a study in 
which the new treatment is given to 17 subjects, and find that it is 
successful in nine. 

A standard statistical analysis of their observations would use a 
Bernoulli(8) statistical model and test the composite hypotheses 
H I :  8  <_ 0.2 versus H2: 8  > 0.2. That analysis would show that H I  
can be rejected in favor of H2 at any significance level greater than 
0.003, a result that is conventionally taken to mean that the observa- 
tions are very strong evidence supporting Hz over H I .  
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But because H I  contains some simple hypotheses that are 
better supported than some hypotheses in H2 (e.g. 8 = 0.2 is better 
supported than 8 = 0.9 by a likelihood ratio of LR = 
(0.2/0.9)~(0.8/0.1)~ = 22.2), the law of likelihood does not allow 
the characterization of these observations as strong evidence for 
H2 over H I .  

What does it allow us to say? One statement that we can make is 
that the observations are only weak evidence in favor of 8 = 0.8 
versus 8 = 0.2 (LR = 4). We can also say that they are rather 
strong evidence supporting 8 = 0.5 over any of the values under 
H , :  8 5 0.2 (LR > 89), and at least moderately strong evidence for 
8 = 0.5 over any value 8 2 0.8 (LR > 22). These ratios change 
very little if we replace 8 = 0.5 by slightly different values. Thus 
we can say that the observation of nine successes in 17 trials is 
rather strong evidence supporting success rates of about 0.5 over 
the rate 0.2 that is associated with, the old treatment, and at least 
moderately strong evidence for the intermediate rates versus the 
rates of 0.8 or greater that we were hoping to achieve. 

The law of likeliho~d'~does not allow us to characterize the 
evidence in terms of the hypotheses H I :  8 < 0.2 and HI :  8 > 0.2. It 
forces us to be more specific, to note and report which values greater 
than 0.2 are better supported than values of 0.2 or less, for example, 
and by how much. As we will see later (Figure 1.1), the law of 
likelihood enables us to see, understand, and communicate the 
evidence as it pertains not just to two pre-selected hypotheses, but 
t o  the totality of possible values of 8. 

1.10 Another counterexample 

I have written numbers on two cards. On one card I wrote the 
number n-' = 0.318 and on the other I wrote the value of a standard 
normal deviate (recorded to three decimal places). One of the cards 
is lost, and I am curious about the remaining one, which is in my 
desk drawer. Is it the card on which I deliberately wrote 0.318, or 
is it the one with the random numbgr? Here we have two simple 
hypotheses; one, HD, states that the number on the card, X, 
equals 0.318 (with probability one), and the other, HN, states that 
X has a standard normal probability distribution. If I open the 
drawer and observe ,the value of X, I will have evidence concerning 
these two hypotheses, and if that value is 0.318, it is evidence 
supporting HD over,: HN by a very large factor. (Since I rounded 
the normal deviate;, the probability of X = 0.318 under HN is 
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approximately 0.001 4(0.318) = 112637, where 4 is the standard 
normal probability density function. Of course, the probability 
under HD is one, so the likelihood ratio in favor of HD, 
PD(X = 0.318)/PN(X = 0.318), is approximately 2637. This is 
very strong evidence, having about the same strength as that 
supporting the hypothesis 'all white' balls versus 'half white' balls 
in the urn example of section 1.6 when we draw 11 consecutive 
white balls. 

This interpretation of the evidence, guided by the law of like- 
lihood, seems entirely reasonable. I know of no arguments to the 
contrary. In fact, this example has never been cited as a counter- 
example to the law. But it bears directly on the next one, which 
has (Hacking, 1972; Hill, 1973; Cox and Hinkley, 1974, p. 52; see 
also Birnbaum, 1969, pp. 127-8). 

Supposing that X has a normal distribution, consider the evidence 
in the single observation X = x. The likelihood ratio for comparing 
the evidence for simple hypotheses HI  : N(pI ,  a:) and H2: N(p2, a:) 
is 

which increases without limit as (pl ,  a:) approach the values (x, 0). 
This means that, regardless of what the true values of (p, a 2 )  are, 
so long as a2 is not zero, we will always find very strong evidence 
in favor of another hypothesis, namely that p = x and a2 = 0. 
Uneasiness with this conclusion appears to grow from its mis- 
interpretation, of which there are at least three varieties: 

1. The conclusion means that no matter what is observed, it will be 
strong evidence against the true hypothesis (but this seems both 
unfair and incorrect). 

2. The conclusion means that whatever value x is observed, I should 
be moved to attach a high degree of belief to the hypothesis 
N(x,O), but I am not so moved. 

3. The conclusion means that the evidence is strong that a2 is very 
small (but it is intuitively clear that with no prior information 
about p, one observation can provide no evidence about a2). 

The first two misinterpretations are analogous to those already 
discovered in the earlier example of one card drawn from a well- 
shuffled deck. The error involved in the first is that it overlooks 
the relativity of evidence: the fact that we can find some other 
hypothesis that is better supported than H does not mean that the 
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observations are evidence against H.  Reaction 2 was also explained 
in the same example: evidence must not be confused with belief. 
Whether or not I am moved to attach a high degree of belief to 
N(x,O) depends on my prior belief in that hypothesis. If I remain 
skeptical, it does not show that the evidence does not favor 
N(x,O) over every other hypothesis. What it does show is that my 
prior skepticism was so strong that it is not overwhelmed by this 
evidence. As the previous example with x = 0.318 showed, if 
N(x,O) had been a hypothesis that was plausible before X was 
observed, then the observation X = x would have elicited a high 
degree of confidence in its truth. 

The third interpretation, that X = x is strong evidence that a2 is 
small, has many facets. One problem is that 'a2 is small', or even the 
more restrictive statement 'a2 = O', is a composite hypothesis, 
allowing the other parameter p to range over the entire real line. 
Concerning the relative support for the composite hypotheses, 
a2  = 0, versus a* = a;, say, the law is silent. A claim that the 
former is the better supported must rest on some additional principle 
or  convention; it is not sanctioned by the law of likelihood. The 
problem of evaluating evidence concerning one parameter in 
models that also contain other parameters ('nuisance' parameters) 
is one with no general solution. The cause has already been described 
in section 1.9. We address this problem in Chapters 6 and 7, where 
we will see that for most problems there are quite satisfactory ad hoc 
methods for representing and interpreting evidence in the presence 
of nuisance parameters. 

1.11 Irrelevance of the sample space 

The law of likelihood says that the evidence in an observation, 
X = x, as it pertains to two probability distributions labelled 8, 
and 82, is represented by the likelihood ratio, f (x; 8,)/f (x; 82). In 
particular, the law implies that for interpreting the observation as 
evidence for hypothesis HI : I3 = 8 ,  vis-a-vis H2: I3 = 02, only the like- 
lihood ratio is relevant. What other values of X might have been 
observed, and how the two distributions in question spread their 
remaining probability over the unobserved values is irrelevant - 
all that counts is the ratio of the probabilities of the observation 
under the two hypotheses. 

This is made clear by examples like the following (Pratt, 1961). 
Suppose that the hypotheses concern the probability I3 of heads 
when a particular bent coin is tossed, and that, to generate evidence 
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about 8,20 tosses are made. The result is reported in code, and you, 
knowing the code, will learn precisely how many tosses produced 
heads. I know only the code-word for '6', so that from the 
report I can determine only whether the outcome is '6' or 'not-6'. 
Thus you will observe a random variable X taking values 

x = 0,1, .  . . ,20 with probabilities (:"I F(1 - o)~'-". I will observe 

20 
Y, which equals 6 with probability ( 6  )@(I - 8)" and some other 

value, c, representing the outcome 'not-6', with probability 

1 - (260)86(1 - 8)". Your sample space consists of the 21 points 
, , 

(0, 1 , .  . . ,201 while mine consists of (6, c}. 
Now suppose the experiment is done and heads occur on six 

tosses. For any probabilities 8, and 02, my evidence concern- 
ing HI :  8 = 8, vis-a-vis H2: 8 = O2 is the same as yours; the 
likelihood ratios for Y = 6 and for X = 6 are identical: 

14 6 87(1 - e l )  /02(1 - O2)I4. Of course, if the experiment had a differ- 
ent outcome, your evidence and mine would have been different; if 
there had been four heads you would have observed X = 4, and 
your likelihood ratio would have been 8:(1 - 81)16/81(1 - 82)16, 
while I would have observed only Y = c, giving a likelihood ratio 
of [l - 38 7608y(l - 0 , ) ' ~ ] / [1  - 38 7608!(l - g2)l4], but that is 
irrelevant to the interpretation of the observation at hand, 
X = Y = 6. Although the scientific community might reasonably 
have chosen to subscribe to your newsletter in preference to 
mine, on the grounds that you could promise to provide a more 
detailed description of the observation under most circumstances, 
for the result that actually occurred, six heads, my report is 
equivalent, as evidence about 8, to yours. Any concept or 
technique for evaluating observations as evidence that denies this 
equivalence, attaching a different measure of 'significance' to your 
report of this result than to mine, is invalid. Whatever can be 
properly inferred about 8 from your report can be inferred from 
mine and vice versa. The difference between our sample spaces is 
irrelevant. 

We will see this example again in the following section and in 
section 3.4, where we use it to illustrate the problems that arise 
when significance tests are used to measure the strength of 
statistical evidence. The 'irrelevance of the sample space' is a 
critically important concept, for it implies a structural flaw that is 
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not limited to significance tests, but pervades all of today's dominant 
statistical methodology. , 

1.12 The likelihood drinciple 

Suppose two simple hypotheses for the distribution of a random 
variable X assign respective probabilities fl(x) andfi(x) to the out- 
come X = x, while two different hypotheses for the distribution of 
another random variable Y assign respective probabilities g,(y) 
and g2(y) to the outcome Y = y. Iffi (x)/f2(x) = g1 (y)/g2(y) then 
the evidence in the observation X = x regarding f l  vis-a-vis fi is 
equivalent to that in Y = y regarding gl vis-a-vis 8 2 .  If a third 
distribution, f3, is considered for X, and a third, g3, for Y, then 
the two outcomes, X = x and Y = y, are equivalent evidence con- 
cerning the respective collections of distributions, {fi, f2, f3} and 
{gl,g2,g3}, if all of the corresponding likelihood ratios are equal: 
fi(x)/h(x) = g1(y)lg2(y),fi(x)lh(x) = g l ( ~ ) l g 3 ( ~ ) ,  etc. This fact 
is called the likelihood principle; it is usually stated in terms of 
likelihood functions, which we now define. 

It is often convenient to use a parameter 8 to label the individual 
members of a collection of probability distributions, so that each 
distribution is identified by a unique value of 8. The collection of 
distributions is { f ( a  ; 8); 8 E 81, where 8 is simply the set of all 
values of 8. If B = O1 then the probability that X = x is given by 
f(x;O1). If the distributions are continuous the same notation, 
f (x; el), represents the probability density function at the point x 
when the distribution is the one labelled 8,. For a fixed value x, 
f (x;8) can be viewed as a function of the variable 8 and it is 
then called the likelihood function. We will use the notation L(8; x) 
for the likelihood function when the value of x needs to be 
made explicit, and use simply L(8) when it does not. The law 
of likelihood gives this function its meaning: if L(8,; x) > L(B2; x), 
then the observation x is evidence supporting the hypothesis 
that 8 is 81 (that is, the hypothesis that X has the distribution 
identified with the parameter value 8,) over the hypothesis 
that 8 is 02, and the Likelihood ratio L(Ol;x)/L(d2;x) s 
f (x; 8,)/f (x; 8,) measures the strength of that evidence. Because 
only ratios of its vdues aye meaningful, the likelihood function is 
defined only up to an arbitrary multiplicative constant - 
L(e; X) = c ~ ( x ;  e). 

The likelihood principle asserts that two obsetvations that gener- 
ate identical likelitf~od"hnctions are equivalent as evidence; in 
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Max at 0.3 
118 LI (0.13, 0.52) 
1/32 LI (0.09,0.59) 
L(0.3)/L(0.5) = 5.18 

Probability of success 

Figure 1.1 Likelihood for probability of success: six successes observed in 20 
trials. 

Birnbaum's (1962) words, 'the "evidential meaning" of experimental 
results is characterized fully by the likelihood function'. 

The example in the previous section concerns a family that con- 
tains many more than three distributions. Your observation of the 
number of heads in 20 tosses of a bent coin was modelled as an 
observation on a random variable X with a binomial probability 
distribution, Bin(20,O). The probability of six successes is 

Pr(X = 6) = (7)06(1 - 8)", so the likelihood function, L(B), is 
, < 

proportional to 86(1 - 8)14, for 0 5 8 5 1. This function appears 
in Figure 1.1, which shows that its maximum is at B = 6/20 = 0.3 
(the 'best-supported' hypothesis) and that 0 = 0.3 is better sup- 
ported than 8 = 0.5 by a modest factor of L(0.3)/L(0.5) = 
(0.3)~(0.7) '~/(0.5)~~ = 5.2. This is slightly stronger than the evi- 
dence in favor of the 'all white' urn (section 1.6) when two white 
balls are drawn. 

A horizontal line is drawn in Figure 1.1 to show the values of 8 
where the ratio of L(8) to the maximum, L(0.3), is greater than 
1/8. Another line shows where it is greater than 1/32. These lines 
define 'likelihood intervals' (LIs) which, along with the maximizing 
value, provide a useful summary of what the data say under the 
present model. The values 118 and 1/32 are used because they 
correspond to the likelihood ratio in the urn example of section 
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1.6 when, respectively, three and five consecutive white balls are 
drawn. 

Values within the 118 likelihood interval are those that are 'con- 
sistent with the observations' in the strong sense that there is no 
alternative value that is better supported by a factor greater than 
8. Thus if 8 is in this interval, then there is no alternative for 
which these observations represent 'fairly strong evidence' in favor 
of that alternative vis-a-vis 8. For any 8 outside this interval there 
is at least one alternative value, namely the best-supported value, 
0.3, that is better supported by a factor greater than 8. The 1/32 like- 
lihood interval has the same interpretation, but with the bench-mark 
value 32, representing 'quite strong' evidence, replacing 8. 

If I perform the same physical experiment but can only discern Y, 
which indicates whether the result was '6' or not, then for me the 
probability of the same observation, six successes, is the same, 

Pr(Y = 6) =Pr (X  = 6 )  = ( 7 ) g 6 ( l  - $)I4, so that my likelihood . . 

function is the same as yours. The evidence about the probability 
of heads is represented by that likelihood function (Figure 1.1), 
and it is the same in both cases - the difference between our 
sample spaces is irrelevant. 

Suppose now that I perform an entirely different experiment. 
Instead of fixing the number of tosses at 20 I resolve to keep tossing 
until I get six heads, then to stop. The random variable is now Z, 
representing the number of tosses required. If I observe Z = 20, 

the probability is Pr(Z = 20) = ( y  ) $(1 - O)", which is different 

from Pr(X = 6) = Pr(Y = 6). But the likelihood function is the 
same, proportional to e6(1 - $)I4. For every pair of values, O1 and 
02, the likelihood ratio is the same when Z = 20 as when 
X = Y = 6, so the results are all equivalent as evidence about 8. 
It  is again represented in Figure 1.1 and has precisely the same inter- 
pretation in all three cases. 

This conclusion calls into question analyses that use the most 
popular concepts and techniques in applied statistics (unbiased esti- 
mation, confidence intervals, significance tests, etc.) when these 
analyses purport to repreffent 'what the data say about 8', i.e. to 
convey the meaning of the observations as evidence about 8. 
These conventional analyses are questionable because they all certify 
that there are important differences between observing X = 6, 
Y = 6, and Z = 6, whereas these three results are in fact evidentially 
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equivalent. For instance, the observed proportion of successes is an 
unbiased estimator of 8 in the first case, but not in the third; a 95% 
confidence interval for 8 based on observation X = 6 will differ from 
those based on Y = 6 or Z = 20; and for testing hypotheses about 8, 
e.g. H I :  8 > 0.5 versus Hz: 8 < 0.5, the three observations will give 
different p-values. We will consider this example again in Chapter 3. 

This is not to say that there are not important differences between 
the three experiments. The first two were sure to be finished after 20 
tosses, while the third could have dragged on indefinitely. The first 
might have produced 20 consecutive heads, giving a likelihood 
ratio favoring $1 = 314 over O2 = 114 by a factor of more than 3 
billion! The second and third experiments cannot possibly generate 
such strong evidence in favor of 81 over 02. But the third, by produ- 
cing a very large value for Z, could have provided much stronger 
evidence in favor of O2 over than any possible outcome of the 
first. The experiments are certainly not equivalent; yet if the first 
one produces X = 6, this outcome is equivalent, as evidence about 
8, to the outcome Y = 6 of the second and to the outcome Z = 20 
of the third. 

The foregoing conclusion applies even when the parameter 8 has a 
totally different meaning in the different experiments. If you make 20 
tosses of a bent coin and observe X = 6 heads and I count the 
number of cars before the sixth Ford has passed my house and 
observe Z = 20 then your evidence about the probability of heads 
and mine about the probability of a Ford are equivalent. Of 
course, this equivalence only applies to the specific families of 
probability distribution being considered: 

for X and 

for Z .  The evidence supports 8 = 114 over 8 = 1/10 by the factor 
19.02, regardless of whether it is your evidence and 8 is the 
probability of heads or it is mine and 8 is the probability of Fords. 
The evidential equivalence of your observation and mine vis-a-vis 
our respective families of distributions applies only to comparisons 
made within those specific families; it clearly does not assume or 
imply that my family is as adequate as a model for the frequency 
of Fords as yours is for the frequency of heads. 
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This concept - that results of two different experiments have the 
same evidential meaning if they generate the same likelihood func- 
tion - has been the focus of much controversy among statisticians. 
Birnbaum (1962) gave a formal statement of the concept, which he 
called the likelihood principle. Other authors, notably Fisher (1922) 
and Barnard (1 949), had previously promoted the concept, but most 
statisticians were not convinced of its validity. Birnbaum increased 
the pressure on the doubters by showing that the likelihood principle 
can be deduced from two other principles that most of them did find 
compelling, the sufficiency and conditionality principles. Since the 
publication of Birnbaum's result in 1962 statistics has struggled to 
understand it and to resolve the dilemma that it created (Birnbaum, 
1962; 1972; 1977; Durbin, 1970; Savage, .l9?0; Kalbfleisch, 1975; 
Berger and Wolpert, 1988; Berger, 1990; Joshi, 1990; Bjornstad, 
1996). 

1.13 Evidence and uncertainty 

We have suggested that the concept of statistical evidence is properly 
expressed in the law of likelihood and that the likelihood function is 
the appropriate mathematical representation of statistical evidence. 
Many likelihood functions, like the one in Figure 1.1, for example, 
look like probability density functions. However, there are critical 
differences between the two kinds of function, both in terms of 
what they mean and in terms of what mathematical operations 
make sense. 

Probabilities measure uncertainty and likelihood ratios measure 
evidence. A probability density function represents the uncertainfy 
about the value of a random variable; it describes how the uncer- 
tainty is distributed over the possible values of the variable (the 
sample space). That uncertainty disappears when the observation 
is made - then the value of the random variable is knowri, and 
that value is evidence about the probability distribution. The like- 
lihood function represents this evidence; it describes the support 
ratio for any pair of distributions in the probability model. 

Sometimes one variable appears in both aspects of a problem. 
It is itself a potentially observable random variable, and it is also 
a parameter that identifies the probability distribution of a second 
random variable. If (X, Y) are random variables with a given joint 
probability distribution, then after X = x is observed, f y  lx(ylx) 
represents the uncertainty about the value of Y. (Note that if we 
denote the second random variable by 8 instead of Y, then we 
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have the Bayesian statistical model and the Bayesian 'solution' to 
the problem of statistical inference, felx(8(x). Bayesian statistics 
will be discussed in Chapter 8.) But the unobserved value y plays 
the role of a parameter in fxly(xl Y), so that the observation 
X = x is statistical evidence about y, generating a likelihood func- 
tion L( y) m fx (XI y) which represents that evidence. Comparing 
these two functions in a familiar example helps to clarify their 
differences. 

Consider the case when x and y are realizations of random vari- 
ables, X and Y, having a bivariate normal probability distribution 
with expected values px and py, variances a: and a:, and covariance 
a,. Suppose the values of all five parameters are known. If x and y 
have not yet been observed then the uncertainty about the value y is 
expressed in the marginal probability distribution of Y, which 
is N(,uy, a:). The observation X = x represents evidence about y. 
It changes the uncertainty, which, after X = x is observed, is 
represented by the conditional probability distribution of Y, 

2 2 2 N(P, + aXy(x - ,u,)/a,,a,(l - p )), where p denotes the correla- 
tion coefficient, axy/axay. This probability density function, 
fylx(y(x),  represents the uncertainty about what value, y, of Y 
will be observed, now that it is known that X = x. 

On the other hand, the variable y indexes a family of possible prob- 
ability distributions for X. These are the conditional distributions of 
X, given Y = y, which are N(px + a,( y - py) /a:, a:( 1 - p2)). Here 
y has the role of a parameter - each value of y determines a different 
probability distribution for X, fx (XI y). Thus the observation X = x 
generates a likelihood function for y, 

L ( ~ )  m exp{-: [x - PX - aXy(y - ~ ~ ) l ~ : l ~ / d ( l  - P')}. (1.5) 

The only variable in this expression is y - everything else, x, px, etc., 
is fixed at its known value. The ratio of values of this function at any 
two points yl and y2, L(yl)/L(y2), measures the relative support for 
these two values of the unknown variable y. 

If X and Y are independent, so that a, = 0, then the likelihood 
function (1.5) for y is a constant, indicating that X = x represents 
no evidence at all about y. Every likelihood ratio L(yl)/L(y2) 
equals one - when a, = 0 no possible value of y is better supported 
than any other by the observation X = x, regardless of the value of x. 

When X and Y are not independent the likelihood function is 
shaped like a normal probability density function centered at the 
point p, + <(x - px)/axy and with variance <(l - $)lp2. That 
is, the likelihood function given in expression (1 3 )  can be rewritten 
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in the form: 

This function represents the evidence about y in the observation 
X = x. It does not represent the uncertainty about y, which is now 
given by the conditional probability density function of Y, given 
X = x: 

This density function is obtained by adjusting the original N(py, a:) 
density function, fY(y), in the light of the evidence X = x. The 
adjustment is made simply by taking the product of the original 
density and the likelihood function L(y). To use this density func- 
tion we must scale it so that its integral over the entire real line 
equals one. When we do that, by dividing expression (1.6) by 
[2xa$(1 - p2)]'12, integration over any interval then gives the prob- 
ability that the value of Y will fall inside that interval. This implies, 
for example, that the probability is 0.95 that y will be found in the 
predictive interval 

p, + a,, (x - pX)/a: 3~ 1 .96uy(l - p2)'12. (1.7) 

On the other hand, the I lk  likelihood interval, 1 
{y; L(y)/max L(y) 2 I /k), which is the set of y values such that 
no alternative is better supported by a likelihood ratio greater 
than k, is 

The probability is 0.95 that the value of the random variable Y 
associated with the observed value x will fall in the predictive inter- 
val (1.7). No such simple probability statement can be made about 
the likelihood interval (1.8). But that interval can be interpreted I 

as a confidence interval. Suppose we use the value k = 
exp{( 1 .96)2/2) = 6.83, so that the coefficient (2 1n k)'12 equals 
1.96. Then for any fixed value y of the random variable Y, if we 
observe the value of the random variable X and construct the 
interval (1.8), the probability that this random interval will contain 
y equals 0.95 (Exercise 1.7). The purpose here is not to suggest that 
likelihood intervals should be interpreted as confidence intervals, 
but simply to clarify the distinction between the state of uncertainty 

EXERCISES 3 1 

about y after observing X = x, which is represented by the condi- 
tional probability density function, and the evidence about y in 
the observation X = x, which is represented by the likelihood func- 
tion. The distinction is essentially the same as that between the phy- 
sician's first and third questions in section 1.3, here rephrased as 
'What is the state of uncertainty about y, now that we know that 
X = x?' and 'What does the observation X = x tell us about y?'. 
The probability density function f Y  lx(ylx) answers the first ques- 
tion, and the likelihood function L(y) answers the second. When 
axy = 0, X = x tells us nothing about y. This is properly represented 
by the flat likelihood function, L(y) = constant; the probability 
density function, f y  lx(ylx) c~ exp{- i (y  - Cc,)2/a;), represents 
something quite different. 

1.14 Summary 

The question that is at the heart of statistical inference - 'When is a 
given set of observations evidence supporting one hypothesized 
probability distribution over another?' - is answered by the law of 
likelihood. This law effectively defines the concept of statistical evi- 
dence to be relative, that is, a concept that applies to one distribution 
only in comparison to another. It measures the evidence with respect 
to a pair of distributions by their likelihood ratio. 

The law of likelihood is intuitively reasonable, consistent with 
the rules of probability theory, and empirically meaningful. It is, 
however, incompatible with today's dominant statistical theory 
and methodology, which do not conform to the law's general 
implications, the irrelevance of the sample space and the likelihood 
principle, and which are articulated in terms of probabilities, which 
measure uncertainty, rather than likelihood ratios, which measure 
evidence. 

Exercises 

1.1 The law of likelihood is stated in section 1.2 for discrete distribu- 
tions. Suppose that two hypotheses, A and B, both imply that a 
random variable X has a continuous probability distribution, 
and that these distributions have continuous density functions, 
pA(x) and pB(x) respectively. Can the law be extended to this 
case? Explain. 

1.2 Suppose A implies that X has probability mass (or density) func- 
tion pA(x), while B implies pB(x). When A is true, observing a 
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value of X that represents strong' evidence in favor of B 
(pB(x)/pA(x) L k) is clearly undesirable. We showed in section 
1.4 that the probability of this event is small (5  1 lk). 
(a) What can you say about the probability of the desirable 

event, namely, finding strong evidence in favor of A? 
(b) It would be nice if, when A is true, the probability of obtain- 

ing strong evidence in favor of A is always at least as great as 
the probability of (misleading) strong evidence in favor of B, 
that is, if 

Give a simple example to show that this inequality need not 
hold. 

1.3 Prove the result stated at the end of section 1.4, namely, if A 
implies that XI ,  X2, . . . are independent and identically distribu- 
ted with probability mass function pA(x), while B implies the 
same, but with a different mass function given by pB(x), then 
when B is true the likelihood ratio in favor of A converges to 
zero with probability one. 

1.4 Suppose XI, . . . , X, are independent, identically distributed 
random variables with a N(8, a2) probability distribution, 
with o2 known. Consider two hypotheses, Ho: 8 = 0 and 
HI :  8 = el ,  where 8, > 0. If a sample is observed with 
J-n'~/a = 1.645, then the p-value, or 'attained significance 
level', for testing Ho versus HI is 0.05. Thisp-value is often inter- 
preted as meaning that the observations represent fairly strong 
evidence against Ho. (This interpretation will be discussed 
later, in section 3.4.) According to the law of likelihood the 
strength of the evidence depends on the value, e l ,  that is speci- 
fied by HI .  
(a) For what value of el is this evidence for HI versus Ho 

strongest? 
(b) For the value of el in (a), what is the likelihood ratio,fi/fo? 
(c) If k represents the number of consecutive draws producing 

white balls in the urn scheme of section 1.6, to what value 
of k does the likelihood ratio in (b) correspond? 

(d) Discuss these results. . . 
1.5 For the same model and hypotheses as in Exercise 1.4, suppose 

we choose some number k > 1 and interpret observations as 
strong evidence in favor of H1 over Ho when fi /fo exceeds k. 
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(a) What value of el maximizes the probability, when Ho is true, 
of finding strong evidence in favor of H I ?  

(b) What is the maximum probability in (a)? 
(c) Compare the bound in (b) with the universal bound, Ilk, 

that was derived in section 1.4. 
(d) When 8 = 0, what is the probability that for some value of 

el > 0 the hypothesis HI :  8 = el will be better supported 
than Ho by a factor of at least k? That is, what is the prob- 
ability. of observing values xl  , x2, . . . , x, for which some 
positive 8 can be found that is better supported than 8 = O? 

1.6 Consider testing HI : X - fi versus Hz: X - fi on the basis of an 
observation on X, with the goal of minimizing the sum of the 
two error probabilities, a + P. Show that the best test procedure 
is to 'choose H2 if the observation is evidence supporting H2 
over H I ;  otherwise choose HI ' .  The critical region that corre- 
sponds to this rule is Ro = {x;f2(x) > fl(x)). Show also that 
the critical region RI = {x;fi(x) > f1(x)) is just as good as 
Ro. [Hint: a+ P = CR fl(x) +- 1 - CRf i (x ) . ]  

1.7 For the bivariate normal probability model in section 1.13, show 
that when k = e~p{(1.96)~/2)  = 6.82 the I l k  likelihood interval 
(1.8) is a 95% confidence interval for y. That is, show that the 
random interval defined by replacing x in (1.8) by a random 
variable which has the conditional probability distribution of 
X, given Y = y, contains the point y with probability 0.95. 


